14,293 research outputs found

    Meso-scale modelling of compressive fracture in concrete with irregularly shaped aggregates

    Get PDF
    This paper presents a meso-scale modelling framework to investigate the fracture process in concrete subjected to uniaxial and biaxial compression accounting for its mesostructural characteristics. 3D mesostructure of concrete consisting of coarse aggregates, mortar and interfacial transition zone between them was developed using an in-house code based on the Voronoi tessellation and splining method, which enables to generate the realistic-look aggregates with controllable structural features such as content, location, size and shape. Based on the generated 3D mesostructure, the concrete damage plasticity approach was employed to simulate the compressive fracture behaviour of concrete in terms of crack morphology and stress-strain response against the shape parameters of aggregate. Results indicate that the shape of aggregate has a negligible effect on compressive strength of concrete, which is highly associated with the random location and size distribution of aggregate. The aggregate irregularity has a significant influence on crack initiation and growth of concrete

    Pulsed THz radiation due to phonon-polariton effect in [110] ZnTe crystal

    Full text link
    Pulsed terahertz (THz) radiation, generated through optical rectification (OR) by exciting [110] ZnTe crystal with ultrafast optical pulses, typically consists of only a few cycles of electromagnetic field oscillations with a duration about a couple of picoseconds. However, it is possible, under appropriate conditions, to generate a long damped oscillation tail (LDOT) following the main cycles. The LDOT can last tens of picoseconds and its Fourier transform shows a higher and narrower frequency peak than that of the main pulse. We have demonstrated that the generation of the LDOT depends on both the duration of the optical pulse and its central wavelength. Furthermore, we have also performed theoretical calculations based upon the OR effect coupled with the phonon-polariton mode of ZnTe and obtained theoretical THz waveforms in good agreement with our experimental observation.Comment: 9 pages, 5 figure

    Tu Weiming, Liberal Education, and the Dialogue of the Humanities

    Get PDF
    This chapter discusses aspects of the work of Tu Weiming in relation to the idea of a liberal education. It does this in the context of broader questions about the nature, problems, and possibilities of comparative philosophy. Dialogue emerges in Tu’s work both as a substantive topic and as integral to aspects of his approach to philosophy and to his commitment to the dissemination of Confucian thought. In spite of Tu’s obvious success in many respects, some problems with this engagement with and in dialogue are identified, and these in turn are related to his treatment of questions of language and translation – in particular to his somewhat negative attitude to philosophy’s linguistic turn. The comparison of Confucian approaches with the idea of a liberal education enables reconsideration of ideas that are central to education, and in so doing the discussion demonstrates the value of comparative approaches in the study of education

    Concise theory of chiral lipid membranes

    Full text link
    A theory of chiral lipid membranes is proposed on the basis of a concise free energy density which includes the contributions of the bending and the surface tension of membranes, as well as the chirality and orientational variation of tilting molecules. This theory is consistent with the previous experiments [J.M. Schnur \textit{et al.}, Science \textbf{264}, 945 (1994); M.S. Spector \textit{et al.}, Langmuir \textbf{14}, 3493 (1998); Y. Zhao, \textit{et al.}, Proc. Natl. Acad. Sci. USA \textbf{102}, 7438 (2005)] on self-assembled chiral lipid membranes of DC8,9_{8,9}PC. A torus with the ratio between its two generated radii larger than 2\sqrt{2} is predicted from the Euler-Lagrange equations. It is found that tubules with helically modulated tilting state are not admitted by the Euler-Lagrange equations, and that they are less energetically favorable than helical ripples in tubules. The pitch angles of helical ripples are theoretically estimated to be about 0∘^\circ and 35∘^\circ, which are close to the most frequent values 5∘^\circ and 28∘^\circ observed in the experiment [N. Mahajan \textit{et al.}, Langmuir \textbf{22}, 1973 (2006)]. Additionally, the present theory can explain twisted ribbons of achiral cationic amphiphiles interacting with chiral tartrate counterions. The ratio between the width and pitch of twisted ribbons is predicted to be proportional to the relative concentration difference of left- and right-handed enantiomers in the low relative concentration difference region, which is in good agreement with the experiment [R. Oda \textit{et al.}, Nature (London) \textbf{399}, 566 (1999)].Comment: 14 pages, 7 figure

    The interaction between stray electrostatic fields and a charged free-falling test mass

    Full text link
    We present an experimental analysis of force noise caused by stray electrostatic fields acting on a charged test mass inside a conducting enclosure, a key problem for precise gravitational experiments. Measurement of the average field that couples to test mass charge, and its fluctuations, is performed with two independent torsion pendulum techniques, including direct measurement of the forces caused by a change in electrostatic charge. We analyze the problem with an improved electrostatic model that, coupled with the experimental data, also indicates how to correctly measure and null the stray field that interacts with test mass charge. Our measurements allow a conservative upper limit on acceleration noise, of 2 fm/s2^2\rthz\ for frequencies above 0.1 mHz, for the interaction between stray fields and charge in the LISA gravitational wave mission.Comment: Minor edits in PRL publication proces

    Performance Evaluation of The Split Transmission in Multihop Wireless Networks

    Get PDF
    Multimedia applications in multihop wireless networks have great market potential. Multiple channels and multiple radios are commonly used to explore multimedia transmissions in multihop wireless networks. Split transmission allows multiple channels attached to different radios to be used simultaneously, and so to achieve a fundamentally improved transmission capacity. The goal of this paper is to present a theoretical background to justify the improved performance of split transmission. We theoretically study and derive formulae to study the improvement in worst-case delay, average throughput and average delay jitter when using split transmission as opposed to non-split transmission. We believe that this is the first attempt to consider split transmission in theory

    Trypanosoma brucei PRMT1 Is a Nucleic Acid Binding Protein with a Role in Energy Metabolism and the Starvation Stress Response.

    Get PDF
    In Trypanosoma brucei and related kinetoplastid parasites, transcription of protein coding genes is largely unregulated. Rather, mRNA binding proteins, which impact processes such as transcript stability and translation efficiency, are the predominant regulators of gene expression. Arginine methylation is a posttranslational modification that preferentially targets RNA binding proteins and is, therefore, likely to have a substantial impact on T. brucei biology. The data presented here demonstrate that cells depleted of T. brucei PRMT1 (TbPRMT1), a major type I protein arginine methyltransferase, exhibit decreased virulence in an animal model. To understand the basis of this phenotype, quantitative global proteomics was employed to measure protein steady-state levels in cells lacking TbPRMT1. The approach revealed striking changes in proteins involved in energy metabolism. Most prominent were a decrease in glycolytic enzyme abundance and an increase in proline degradation pathway components, changes that resemble the metabolic remodeling that occurs during T. brucei life cycle progression. The work describes several RNA binding proteins whose association with mRNA was altered in TbPRMT1-depleted cells, and a large number of TbPRMT1-interacting proteins, thereby highlighting potential TbPRMT1 substrates. Many proteins involved in the T. brucei starvation stress response were found to interact with TbPRMT1, prompting analysis of the response of TbPRMT1-depleted cells to nutrient deprivation. Indeed, depletion of TbPRMT1 strongly hinders the ability of T. brucei to form cytoplasmic mRNA granules under starvation conditions. Finally, this work shows that TbPRMT1 itself binds nucleic acids in vitro and in vivo, a feature completely novel to protein arginine methyltransferases.IMPORTANCETrypanosoma brucei infection causes human African trypanosomiasis, also known as sleeping sickness, a disease with a nearly 100% fatality rate when untreated. Current drugs are expensive, toxic, and highly impractical to administer, prompting the community to explore various unique aspects of T. brucei biology in search of better treatments. In this study, we identified the protein arginine methyltransferase (PRMT), TbPRMT1, as a factor that modulates numerous aspects of T. brucei biology. These include glycolysis and life cycle progression signaling, both of which are being intensely researched toward identification of potential drug targets. Our data will aid research in those fields. Furthermore, we demonstrate for the first time a direct association of a PRMT with nucleic acids, a finding we believe could translate to other organisms, including humans, thereby impacting research in fields as distant as human cancer biology and immune response modulation. Copyright © 2018 Kafková et al

    An open-source, stochastic, six-degrees-of-freedom rocket flight simulator, with a probabilistic trajectory analysis approach

    No full text
    Predicting the flight-path of an unguided rocket can help overcome unnecessary risks. Avoiding residential areas or a car-park can improve the safety of launching a rocket significantly. Furthermore, an accurate landing site prediction facilitates recovery. This paper introduces a six-degrees-of-freedom flight simulator for large unguided model rockets that can fly to altitudes of up to 13 km and then return to earth by parachute. The open-source software package assists the user with the design of rockets, and its simulation core models both the rocket flight and the parachute descent in stochastic wind conditions. Furthermore, the uncertainty in the input variables propagates through the model via a Monte Carlo wrapper, simulating a range of possible flight conditions. The resulting trajectories are captured as a Gaussian process, which assists in the statistical assessment of the flight conditions in the face of uncertainties, such as changes in wind conditions, failure to deploy the parachute, and variations in thrust. This approach also facilitates concise presentation of such uncertainties via visualisation of trajectory ensembles

    Front Stability in Mean Field Models of Diffusion Limited Growth

    Full text link
    We present calculations of the stability of planar fronts in two mean field models of diffusion limited growth. The steady state solution for the front can exist for a continuous family of velocities, we show that the selected velocity is given by marginal stability theory. We find that naive mean field theory has no instability to transverse perturbations, while a threshold mean field theory has such a Mullins-Sekerka instability. These results place on firm theoretical ground the observed lack of the dendritic morphology in naive mean field theory and its presence in threshold models. The existence of a Mullins-Sekerka instability is related to the behavior of the mean field theories in the zero-undercooling limit.Comment: 26 pp. revtex, 7 uuencoded ps figures. submitted to PR
    • …
    corecore